
1
American Institute of Aeronautics and Astronautics

EXAMINING REUSE IN LASRS++-BASED PROJECTS

Michael M. Madden*

NASA Langley Research Center
MS 125B

Hampton, VA 23681

Abstract
NASA Langley Research Center (LaRC) developed the
Langley Standard Real-Time Simulation in C++
(LaSRS++) to consolidate all software development for
its simulation facilities under one common framework.
A common framework promised a decrease in the total
development effort for a new simulation by encouraging
software reuse. To judge the success of LaSRS++ in
this regard, reuse metrics were extracted from 11 air-
craft models. Three methods that employ static analysis
of the code were used to identify the reusable compo-
nents. For the method that provides the best estimate,
reuse levels fall between 66% and 95% indicating a
high degree of reuse. Additional metrics provide in-
sight into the extent of the foundation that LaSRS++
provides to new simulation projects. *

When creating variants of an aircraft, LaRC developers
use object-oriented design to manage the aircraft as a
reusable resource. Variants modify the aircraft for a
research project or embody an alternate configuration of
the aircraft. The variants inherit from the aircraft
model. The variants use polymorphism to extend or
redefine aircraft behaviors to meet the research re-
quirements or to match the alternate configuration. Re-
use level metrics were extracted from 10 variants. Re-
use levels of aircraft by variants were 60% - 99%.

* Senior Member, AIAA
Copyright © 2001 by the American Institute of Aero-
nautics and Astronautics, Inc. No copyright is asserted
in the United States under Title 17, U.S. Code. The
U.S. Government has a royalty free license to exercise
all rights under the copyright claimed herein for Gov-
ernment Purposes. All other rights are reserved by the
copyright owner.

Acronyms
AoR Amount of Reuse Metric
DC Dependency Chain Method
ERF External Reuse Frequency Metric
ERL External Reuse Level Metric
F Frequency
GUI Graphical User Interface
LaRC Langley Research Center
LaSRS++ Langley Standard Real-Time Simulation in

C++
LOC Lines of Code
NOC Number of Classes
OC Object Chain Method
RO Refined Object Chain Method
Rsf Size-Frequency Reuse Metric

Introduction
The LaSRS++ project had three main goals:
1. Create one simulation framework from which de-

velopers could build both single-vehicle and multi-
vehicle simulations for a variety of aircraft. This
goal aimed to increase developer utilization. In the
1980’s, each simulator at LaRC had its own code
base. With one common framework, developers no
longer had to undergo significant training to move
from one simulator to the next.

2. Move vehicle models between simulators with
minimal additional development. With separate
code bases, vehicle models had to be rewritten and
re-tested to move to another simulator.

3. Encourage software reuse. With separate code
bases leading to segregated development teams, re-
invention of features was not only common but
sometimes necessary. Designed as an object-
oriented framework, LaSRS++ provided a large
number of generic components that developers
could reuse when writing a new simulation. When

AIAA-2001-4119

2
American Institute of Aeronautics and Astronautics

possible, new features are made into generic com-
ponents and added to the framework for the benefit
of future projects.

The first two goals defined project success. When the
first two goals were demonstrated, LaRC adopted
LaSRS++ as its standard simulation framework.1,2

Software reuse could not be factored into the adoption
decision because it could not be measured until several
successful projects were created using LaSRS++.

This study examines 21 aircraft simulation projects that
were built using LaSRS++. These projects fall into two
categories: standalone aircraft models (11) or variants
of the standalone aircraft (10). Some variants represent
alternate configurations of an aircraft; for example, the
F18C is modeled as a variant of the F18A. Other vari-
ants are created to support a specific research project.
For example, B757-WXAP is a variant of the B757 for
the Weather and Accident Prevention (WxAP) project.

To determine the success of LaSRS++ as a reusable
framework, the standalone aircraft models (a.k.a. base
aircraft) were examined. Static analysis techniques
were applied to the code to produce a list of LaSRS++
components that the base aircraft reuse. This list was
then applied to several reuse metrics to provide a meas-
ure of reuse for each aircraft.

As they do with the LaSRS++ framework, LaRC devel-
opers employ object-oriented design to manage the base
aircraft as a reusable resource for the variants. To judge
the success of employing this design choice, reuse met-
rics are also applied to the aircraft variants. This analy-
sis focuses on the base aircraft as the pre-existing code
base and ignores LaSRS++ code.

Categorizing Reuse
Before identifying reused code, its characteristics must
be defined. Computer Sciences Corporation (CSC) de-
fined four categories of reuse in their “standards and
practices” manual:3

1. Transported. The code is reused as-is from a pre-
existing code base.

2. Adapted. The code is taken from a pre-existing
code base and less than 25% of it is modified.

3. Converted. The code is taken from a pre-existing
code base and 25%-50% of it is modified.

4. New. The code is written from scratch; or the
code is taken from a pre-existing code base and
more than 50% of it is modified.

Frakes and Terry combine the adapted and converted
categories together into a single “adaptive” category.4

Bieman also uses a single category for adapted code but
calls it “leveraged.”5 Both studies use the term “verba-
tim” in place of “transported.”4,5 This paper will use the
simpler three category system and employ the terms:
“verbatim”, “leveraged”, and “new”. Some studies also
give credit for reuse if a program uses new code more
than once. Frakes and Terry call this “internal” reuse.4

(Reuse from a pre-existing code base is “external” re-
use.) Since this study attempts to measure the success
of LaSRS++ (and base aircraft) as a reusable frame-
work, internal reuse is ignored.

Under the LaSRS++ development process, developers
are not allowed to copy and modify LaSRS++ code to
produce a vehicle-only variant. If a vehicle requires
data and/or behavior modifications to a LaSRS++ class,
the developer must use inheritance and polymorphism
to make the changes.† In other words, the vehicle-only
specialization must inherit from the LaSRS++ class.
Since no reused LaSRS++ code is modified, all
LaSRS++ reuse would be transported (a.k.a. verbatim)
under CSC’s definitions. However, Bieman views in-
heritance and polymorphism as language-supported
mechanisms for modifying reused code.5 Thus, Bieman
categorizes inheritance as “leveraged” reuse. This pa-
per will apply Bieman’s definition from the perspective
of the new code only. When a new class inherits from a
LaSRS++ class, then the reuse is categorized as “lever-
aged”. All ancestors of the LaSRS++ parent are also
counted as “leveraged” reuse. All other reuse is verba-
tim. Thus, if new code exercises verbatim reuse of a
LaSRS++ class, then all ancestors of the LaSRS++ class
are also counted as verbatim reuse.

The same rules also apply to variants of base aircraft.
The developer is not allowed to copy and modify the
base aircraft code. The developer must use inheritance

† Inheritance groups classes, which share common at-
tributes and behaviors, into hierarchies. Polymorphism
allows a derived class to redefine the behavior of a base
class interface.6

3
American Institute of Aeronautics and Astronautics

and polymorphism to add the variant’s unique data and
behaviors to base aircraft classes. Inheriting from the
base aircraft constitutes leveraged reuse of the base
aircraft. All other reuse of the base aircraft is verbatim.

Methods

Identifying the Reused Components
The first step in measuring reuse of LaSRS++-based
projects is to identify the reused LaSRS++ components.
Getting an accurate list of reused components is prob-
lematic. The only accurate means is to instrument the
code for call chain analysis and to create a set of runs
that provide 100% code coverage of the vehicle source
files and exercises all paths in the LaSRS++ code rele-
vant to the vehicle. For software with the complexity of
LaSRS++-based simulations, developing a complete set
of runs is very time consuming and nearly impossible.
A static analysis of the source is a more economical
means of obtaining data. But static analysis provides, at
best, an estimate of the reused components. For this
study, two static analysis methods were selected to pro-
vide a lower and upper bound of reused components. A
method provides an upper bound if it selects all compo-
nents reused by the project and may possibly falsely
identify extra components. A method provides a lower
bound if it does not falsely select any components but,
in the process, may overlook some reused components.

The dependency chain (DC) and the object chain (OC)
were selected to provide these bounds. The dependency
chain identifies all of the source files that are required
to build a simulation containing the aircraft model. It
provides the upper bound. The object chain method
statically analyzes the code for the creation of objects.
It counts only the classes and ancestor classes of identi-
fied objects. This method provides a lower bound when
it ignores objects created within conditional statements
in LaSRS++ code.‡

The dependency chain was obtained from ClearCase,
the configuration management tool used for LaSRS++.
When used for build management, ClearCase records
the source files that the compiler reads when it creates
the executable. The DC method falsely adds some

‡ “if-else” or “switch” statements.

classes because some LaSRS++ components are condi-
tionally created based on checks of the vehicle’s con-
tents. For example, the file dependency list for the
B757 includes all LaSRS++ components related to
weapons because the LaSRS++ graphical user interface
(GUI) conditionally creates a weapon system dialog if
the vehicle has a weapon system. The DC method iden-
tifies all reused files and may falsely identify some files
as reused. Thus, reuse measures derived from the DC
method represent an upper bound.

In the OC method, the source files are statically ana-
lyzed to produce a list of created objects. A perl script
was created to extract the object list from the source
files. First, the vehicle-only files are examined for the
list of LaSRS++ objects that they create. LaSRS++
files related to the object list are then analyzed for a list
of objects that they will unconditionally create. The last
step is repeated until the object chain is exhausted. It is
the conditional creation of objects in LaSRS++ files that
creates false identifications in the DC method. The OC
method ignores object creation within conditional
statements in LaSRS++ code so that it will not falsely
identify classes as reused. But, this may also cause the
method to miss valid, reused classes.

The OC method counts an object (i.e. a class instance)
if any of the following conditions are encountered:
1. An object (but not a pointer or reference) of the

class is declared.
2. An object of the class is allocated using the opera-

tor new.
3. The class is a superclass of a previously instanced

class.
4. A method of a previously instanced class returns an

object of the class by value.§

5. A scope-qualified invocation of a class member is
made and no other instance of the class is identi-
fied. This condition identifies class utilities, which
contain only static members. The program creates a
single global instance of the class utility. Thus, all
invocations for a class utility are attributed to a sin-
gle global object.

§ This was a welcome side effect of the search pattern
for object declarations.

4
American Institute of Aeronautics and Astronautics

The OC method finds most, but not all classes that the
simulation will instance. It will fail to identify classes
instanced only under the following conditions:
1. A template instances one of its type arguments.

LaSRS++ has some classes that are instanced only
by templates.

2. LaSRS++ code creates the object within a condi-
tional statement. As stated above, this is by design.

3. A method of a previously instanced class uses pass-
by-value for an argument of the class type. This is
rare in LaSRS++ projects. Its rarity did not justify
the effort to make a reliable search for it.

The OC method will not identify classes, which the
project does not use; but it may overlook classes that
the project does use. Thus, it serves as a good lower
bound for reuse measures.

The true measure of reuse will lie between values com-
puted from the OC and DC methods. The results in
Table 1 show that there is a large range between the
two techniques. In all cases, the OC method selects less
than half of the LaSRS++ files selected by the DC
method. To obtain a better idea of where the true
measure may fall in this range, a third result is com-
puted by refining the results for the OC method.

The OC list of reused files is refined by inspecting the
difference between the reused class lists from the OC
and DC methods. The difference lists for all aircraft
share a common set of 861 files. Thirty-six percent
(309 files) are primitive classes that are not specific to
the domain of simulation at LaRC. These classes are
used to build the domain-specific math models (32
files), system interfaces (66 files), or GUI elements
(209 files). The remaining domain specific files are
broken down as follows: math models (146), system
interfaces (122), and GUI elements (286). In total, 57%
of the rejected files are GUI components. This is not
surprising since many GUI elements are conditionally
created in response to user inputs. The remainder is
nearly split evenly between math models (21%) and
system interfaces (22%). An inspection of these files
reveals a host of components that are conditionally built
based on runtime options and cockpit selection. Over-
all, a minority of the commonly rejected files is condi-
tionally built based on the presence of select compo-
nents in the vehicle.

Therefore, all aircraft models reuse most of the com-
monly rejected files. Adding them to the object chain’s
list will result in a list that provides a better estimate of
reuse. This refinement method is called the refined ob-
ject chain (RO) method. The refined number represents
neither a new upper bound nor a new lower bound. A
combination of the object chain list and the common
rejected file list may contain files that a project does not
use in addition to possibly overlooking files that the
project does use. However, metrics derived from the
refined list are more likely to be in the neighborhood of
the true value than metrics derived from either the de-
pendency chain or object chain lists.

Selecting the Metrics
This study was focused on answering one basic ques-
tion. Does LaSRS++ succeed as a reusable framework?
This question governed the selection of the metrics.
Metrics that measure the amount of LaSRS++ reuse in a
simulation are pertinent to the question. A survey of
general reuse metrics is found in papers by Devenbu (et.
al.) and by Frakes and Terry.4,7 Of the currently pro-
posed metrics, the “amount of reuse” (AoR) metric, the
External Reuse Level (ERL), the External Reuse Fre-
quency (ERF), and the “size-frequency reuse” (Rsf) met-
ric most directly address the question. Bieman also
proposes a set of reuse metrics specifically for object-
oriented code.5 But, these metrics provide insight into
the nature of the reuse rather than the amount. Al-
though Bieman’s metrics are of interest, they do not
directly answer the question. Future work may include
Bieman’s metrics.

The AoR metric is the simplest and most widely used.
It is the ratio of lines of code (LOC) reused from
LaSRS++ to the total LOC of the simulation:

total

framework

LOC
LOC

AoR =

For this metric, LOC was measured as non-comment,
non-blank source lines. However, the exact technique
used to count LOC is not important when:7,8,9

a. The body of code being analyzed is written ac-
cording to a published style guide, or the body of
code is written within the same subject domain.

b. The body of code is written in the same language.
c. The metric uses the ratio of LOC counts.

5
American Institute of Aeronautics and Astronautics

All three criteria apply to LaSRS++-based code and the
AoR metric.

¶ DC = Dependency Chain. OC = Object Chain. RC =
Refined Object Chain.
Number in parenthesis is the LOC of auto-generated
code that contains table data. This code was excluded
from the LOC count of the model.

Some auto-generated code was excluded from the LOC
count. Many projects use look-up tables. LaSRS++
supplies a utility that generates code from the raw table
data. The utility supplies two options for loading the
data: read from file or coded static arrays. Many proj-
ects load some or all of their table data via code because
it provides faster startup time. This code was excluded
from LOC counts used in metrics. For completeness,

Table 1 Reuse Metrics of Base Aircraft Projects¶

File Count LOC Class CountAircraft
Name Model LaSRS++ Model# LaSRS++ Model LaSRS++

AoR ERL ERF
(OC)

Rsf

(OC)

B757 309 1882 DC

913 OC

1774 RO

102486
(1659)

228082 DC

116834 OC

216801 RO

131 889 DC

403 OC

835 RO

69% DC

53% OC

68% RO

.87 DC

.76 OC

.86 RO

.94 .91

F18E 367 1805 DC

702 OC

1563 RO

98127
(435003)

215983 DC

93421 OC

193388 RO

165 851 DC

298 OC

730 RO

69% DC

49% OC

66% RO

.84 DC

.64 OC

.82 RO

.94 .89

F18E-
RPV

190 1813 DC

696 OC

1557 RO

45193
(12812)

216160 DC

92322 OC

192289 RO

90 854 DC

294 OC

726 RO

83% DC

67% OC

81% RO

.91 DC

.77 OC

.89 RO

.96 .90

F18A 175 1795 DC

730 OC

1591 RO

32434
(9658)

213780 DC

93559 OC

193526 RO

81 848 DC

314 OC

746 RO

87% DC

74% OC

86% RO

.91 DC

.80 OC

.90 RO

.95 .95

F16C 97 1713 DC

660 OC

1521 RO

19895
(27805)

212794 DC

92058 OC

192025 RO

45 808 DC

280 OC

712 RO

91% DC

82% OC

91% RO

.95 DC

.86 OC

.94 RO

.98 .97

HL-20 75 1700 DC

721 OC

1582 RO

16266
(2055)

208841 DC

97820 OC

197787 RO

36 802 DC

311 OC

743 RO

93% DC

86% OC

92% RO

.96 DC

.90 OC

.95 RO

.99 .98

F16XL 84 1693 DC

610 OC

1471 RO

11210
(2372)

208632 DC

84130 OC

184097 RO

38 798 DC

255 OC

687 RO

95% DC

88% OC

94% RO

.96 DC

.87 OC

.95 RO

.98 .98

F16A 88 1711 DC

630 OC

1491 RO

10800
(2325)

214386 DC

90303 OC

190270 RO

41 805 DC

263 OC

695 RO

95% DC

89% OC

95% RO

.95 DC

.87 OC

.94 RO

.98 .98

F15A 89 1707 DC

650 OC

1511 RO

10074
(2760)

210427 DC

90265 OC

190232 RO

42 803 DC

273 OC

705 RO

95% DC

90% OC

95% RO

.95 DC

.87 OC

.94 RO

.98 .98

Generic
Fighter

76 1701 DC

648 OC

1509 RO

7954
(821)

209842 DC

89434 OC

189401 RO

34 802 DC

274 OC

706 RO

96% DC

92% OC

96% RO

.96 DC

.89 OC

.95 RO

.98 .99

General
Aviation

56 1698 DC

699 OC

1560 RO

7015
(0)

208760 DC

94795 OC

194762 RO

28 801 DC

300 OC

732 RO

97% DC

93% OC

96% RO

.97 DC

.92 OC

.96 RO

.99 .99

6
American Institute of Aeronautics and Astronautics

Table 1 does provide the LOC for the table data in each
vehicle. The total LOC of table data in the entire
LaSRS++ framework is 2044 and is also excluded. The
utility also auto-generates the proper object declarations
and look-up code. However, this auto-generated code is
sometimes mixed with hand-written code. Thus, it is
included in the LOC count. Since vehicle code uses far
more table lookups than LaSRS++ components, in-
cluding this code tends to depress the AoR metrics.

Frakes and Terry proposed the ERL metric.4 This met-
ric views the system as an aggregation of parts with
different levels of abstraction. Classes, functions, and
source files are different ways of decomposing the sys-
tem. ERL recognizes that developers do not typically
reuse individual lines of code but higher level abstrac-
tions. In LaSRS++-based projects, developers almost
exclusively work with classes as the basic unit of reuse.
Thus, the class was the level of abstraction chosen. In
this context, the metric is the ratio of the number of
classes (NOC) from LaSRS++ to the total NOC.

total

framework

NOC
NOC

ERL =

The strength of the AoR metric is that it accounts for
component size. The ERL metric does not. Since size
and cost are closely related, AoR better correlates with
cost savings than ERL.7 But, ERL provides better in-
sight into how much of the system’s decomposition into
components is covered by reused components. It can
act as an indicator of how well developers were able to
identify and incorporate building blocks from the
framework into a new program.

A common criticism of the AoR and ERL metrics is that
they give credit only once for reuse of a component.7

However, Poulin defends the single-use credit. Since
programmers should be expected to build a system from
a decomposition of functions rather than as a stream of
consciousness, the cost of implementing a component is
saved only once.10 Still, metrics that account for the
frequency of reused code, provide insight into the depth
of infrastructure offered by the framework. A system
that relies greatly on reused code for much of its activity
cost less to design and test than a system that relies
mostly on new code.

Both the ERL and AoR metrics have frequency coun-
terparts: the External Reuse Frequency (ERF) and the
Size-Frequency Reuse (Rsf).4,5 The frequency (F) of a
reused item is the number of times that item is invoked
in the code. For classes, it is the number of objects of
the class that the program creates. ERF is the sum of
the frequency of the reused classes divided by the sum
of the frequency of all classes (i.e. new and reused):

�

�

=

==
totalN
li i

frameworkN
li i

F

F
ERF

ERF can act as an indicator of reduced design time
since it measures how much the system relies on pre-
existing classes (i.e. designs) for its behavior. It can
also act as an indicator of reduced maintenance. Com-
ponents with a high frequency of use have been adapted
to and tested in more situations. Thus, they tend to be
more adaptable to future changes and more robust than
components with a low frequency of use. Rsf is similar
to ERF except the frequency of each class is multiplied
by its LOC count during the summation:

�

�

=

==
totalN
li ii

frameworkN
li ii

sf
LOCF

LOCF
R

)*(

)*(

Rsf can act as an indicator of reduced testing time since
it measures how much of the total program logic** con-
sists of pre-existing (and pre-tested) code.

As with the other metrics, the static analysis cannot
provide the true value of ERF or Rsf. But the OC
method can provide a lower bound. While the OC
analysis processes source files for object creation, it can
track the number of instances it encounters for a class.
The OC method has two limitations, it captures only a
subset of the reused classes and it undercounts their
frequency. The manner in which the OC method identi-
fies objects guarantees an undercount of LaSRS++ ob-
jects. For example, the OC method counts only one
object when an array of objects is declared or allocated.
When the OC method counts a derived class instance, it

** Program logic is defined to be the stream of code that
would result if all calls to class methods and functions
were replaced with the method/function code.

7
American Institute of Aeronautics and Astronautics

does not also count an instance of the ancestors. Un-
dercounting is not a problem for the vehicle-only
classes. Since the amount of vehicle-only code is much
smaller, instance counts can be verified using inspec-
tion. Since the DC method does not identify objects, it
cannot be used to compute an upper bound. Thus, the
maximum possible value is below one for ERF and Rsf.

Base Aircraft Metrics
Eleven base aircraft were analyzed. These aircraft
cover a wide range of configurations: transports (B757),
fighters (F18E, F18E-RPV, F18A, F16C, F16XL,
F16A, F15A, and Generic Fighter), advanced concept
vehicles (HL-20††), and general aviation. Table 1
shows the reuse level metrics derived for these aircraft
using the three analysis methods: dependency chain
(DC), object chain (OC), and refined object chain
(RO).‡‡ The ranges of AoR are 49%- 93% OC, 66% -
96% RO, and 69%- 97% DC. The ranges of ERL are
0.64 – 0.92 OC, 0.82 – 0.96 RO, and 0.84 – 0.97 DC.
Only the AoR results for B757 and F18E under the OC
method show less than a two-thirds reuse level. As
stated earlier, the OC greatly undercounts the number of
reused classes. If these results were excluded, then all
base aircraft demonstrate a greater than two-thirds level
of reuse of LaSRS++. LaSRS++ provides a source
code repository from which a simulation takes the ma-
jority of its code.

As stated earlier, the author has greater confidence in
the RO numbers than the OC or DC numbers. The re-
sults for the RO and DC methods are very close, within
less than 2% for all aircraft. The DC method is a much
simpler analysis than the OC or RO methods. Thus, for
future LaSRS++-based vehicles, the DC method can
quickly provide an estimate of reuse level that is fairly
good though over-inflated.

The level of reuse provides part of the evidence that
simulations use LaSRS++ as a framework. It shows that
components designed as reusable are being reused. But
it does not demonstrate whether LaSRS++ provides a

†† A high lifting body evaluated for space crew trans-
portation.
‡‡ LaSRS++ is a multi-vehicle capable framework. Met-
rics were computed for a simulation with one vehicle.

foundation for building simulations; i.e., it provides a
core set of components that are relevant to all aircraft
simulations at LaRC. The file lists were examined for
the quantity of files that were common to all aircraft.
For each reuse identification method, Table 2 shows a
list of the LaSRS++ files reused by all base aircraft.
For each of the file attributes (number, classes, and
LOC), Table 3 shows the percentage ranges of the
common reused files to the total reused files and to the
total files (reused and new).

Table 2 Files Common to All Base Aircraft
Analysis Method Files Classes LOC

Object Chain 542 225 77691
Refined Object Chain 1403 657 177658
Dependency Chain 1673 792 206954
Common OC Rejects 861 432 99967

Table 3 Common Component Percentage Ranges
Common/Total ReusedAnalysis

Method Files Classes LOC
OC 59 – 89% 56 – 88% 66 – 92%
RO 79 – 95% 79 – 96% 82 – 97%
DC 89 – 99% 89 – 99% 91 – 99%

Common/Total (Reused + New)Analysis
Method Files Classes LOC
OC 44 – 78% 42 – 77% 35 – 81%
RO 67 – 90% 68 – 91% 56 – 91%
DC 76 – 94% 78 – 95% 63 – 94%

There is a wide range of results between the identifica-
tion methods with the RO and DC methods being clos-
est in agreement. The OC method shows that the com-
mon components make up at least two-thirds and as
much as 90% of the reused code. The RO method indi-
cates that the common components likely make up more
than 80% of the reused code. Percentages for the DC
method are even higher. As a percentage of total pro-
gram size, the OC method shows that LaSRS++ pro-
vides the developer with a minimum one-third of their
simulation at the start. The RO and DC methods, indi-
cate that LaSRS++ likely provides the developer with at
least half of the simulation up front and may provide as
much as 90% of the simulation. The length of the
common file set reflects the wide range of features that
LaSRS++ provides to simulations: real-time scheduling,

8
American Institute of Aeronautics and Astronautics

equations of motion, environment modeling, hardware
interfaces, GUI, etc. As the proportion of these com-
mon files to the total simulation demonstrates,
LaSRS++ is a framework that gives developers a head
start on producing simulations for LaRC’s facilities.

The study uses ERF and Rsf to quantify how much of a
simulation’s logical structure is built upon LaSRS++.
Table 1 shows the results, as estimated from the OC
method. The results are the lower bound for the true
value. The ERF shows that a simulation instances more
than 94% of its objects from LaSRS++ classes. Only a
small portion of objects is instanced from new code.
The result implies that design cycles should be short,
involving only a small number of objects. Experience
shows that design of LaSRS++-based simulations con-
centrates on the unique aspects of the vehicle model.
LaSRS++ handles all other concerns such as schedul-
ing, equations of motion, environment modeling, GUI,
and hardware communication. Even when other aspects
of the simulation need tailoring for a simulation, the
design usually involves a simple derivation from an
existing class hierarchy.

The Rsf shows that greater than 89% of the total pro-
gram logic lies within LaSRS++ code. The LaSRS++
code has already undergone extensive testing. Thus, the
developer can assume that LaSRS++ code has a low
defect count.§§ Simulation testing can concentrate on
the new code, which makes up no more than 11% of the
total system behavior. As with design, simulation test-
ing tends to focus on the unique aspects of the vehicle
model. The majority of errors that occur during testing
should originate from new code. The developer can
productively identify defects by first concentrating on
the new code and ignoring LaSRS++ code.

The high ERF and Rsf values reflect the structure of
LaSRS++ simulations. The vehicle-only code (i.e. new
code) is a small extension of a large existing infra-
structure. New code tends to be an aggregation of
LaSRS++ components that inherits from a LaSRS++
class hierarchy. Since new classes specialize at model-
ing aspects of a vehicle, a simulation typically instances

§§ Software with the complexity of the LaSRS++
framework is rarely defect-free.

a new class only once.¶¶ As computed by the OC
method, the average number of instances per new class
ranges from 1.1 (General Aviation) to 2.7 (B757). Only
the F18A, F18E, and B757 have an average of greater
than two (2.3, 2.3, and 2.7 respectively). The next
highest average is 1.5 for the F18E-RPV. On the other
hand, the average number of instances per LaSRS++
class ranges from 8.5 (General Aviation) to 19.0
(F18E). The high ERF and Rsf values result from a
higher average frequency of use for LaSRS++ classes
than for new classes. LaSRS++ classes are more often
used than new classes as building blocks for the simula-
tion. The ERF and Rsf metrics corroborate that
LaSRS++ provides a large structural foundation for
simulations, not just a code repository.

Vehicle models can reuse LaSRS++ in one of two
forms: leveraged (via inheritance) and verbatim. Since
it examines the code for inheritance and object creation,
only the OC method was capable of providing an esti-
mated categorization of LaSRS++ reuse by the vehicles.
Of the reused LaSRS++ classes, the vehicles reuse 6 -
11% through leverage (i.e. inheritance). The vehicles
reuse 93 – 96% verbatim. The two ranges do not com-
bine to 100% because some classes are reused both
verbatim and through leverage. Verbatim reuse is
clearly the predominant form of reuse for vehicle mod-
els. The large percentage of verbatim reuse reinforces
the depiction of vehicle models as a small extension to a
large underlying infrastructure.

Aircraft Variant Metrics
A wide variety of research projects may use the base
aircraft to conduct experiments. Research projects have
four requirements for working with the base aircraft:
1. Research projects must be able to modify any as-

pect of the aircraft for the experiment.
2. Research projects must be isolated from each other.

Changes from one project cannot unintentionally
affect the results of another project.

3. Elevating project enhancements to the base aircraft
should be simple.

4. Research projects must have access to the latest
changes made to the base aircraft.

¶¶ per aircraft instance.

9
American Institute of Aeronautics and Astronautics

Research variants of an aircraft adhere to these re-
quirements by relying on inheritance to manage the air-
craft as a reusable resource. Figure 1 illustrates the
standard design for variants. Each variant inherits from
the base aircraft. All specialization is done within the
derived class. Polymorphism is used to redefine any
behaviors inherited from the base aircraft. Inheritance
allows projects to modify the base aircraft while main-
taining project isolation. If an update is made to the
base aircraft, all variants immediately inherit it. Be-
cause modifications by the variant are made within the
base aircraft structure that it inherits, elevating the
changes into the base aircraft is usually straightforward.
The same design is also used to create alternate configu-
rations of the aircraft. For example, the F18TV is thrust
vectoring variant of the F18A.

Reuse level metrics were collected for ten aircraft vari-
ants. Of the variants, only the last two (F18C and
F18TV) are configuration variants; the other eight are
research variants. The metrics focus on the reuse of the
base aircraft by the variant; the metrics ignore
LaSRS++ code. Unlike LaSRS++, the base aircraft is
not a generic framework. All classes
in the base aircraft are relevant to
each instance of the vehicle. Thus,
the DC method provides accurate file
lists for vehicle code and was the
only identification method used.

Reuse level metrics measure how
well the design of variants promotes
reuse of the base aircraft. The results
are shown in Table 4. The AoR val-
ues range from 60% to 99% with all
but the F18C at 70% or greater. The
ERL values range from .61 to .94.

The research variants tend to introduce small modifica-
tions to the base aircraft. The AoR for the research
variants is 73% or greater with all but the F16A-FL at
90% or greater. The configuration variants introduce a
larger body of modifications. Configuration variants
usually introduce major changes to the aerodynamic
model, engine model, control surface models, and/or
control law. The AoR for the two configuration vari-
ants is 60% (F18C) and 70% (F18TV). Overall, the
variants rely on the base aircraft for the majority of its
code.

Although variants are derived from the base aircraft, the
variants do not necessarily reuse a significant portion of
the base aircraft through leverage. The design of vari-
ants only requires leveraged reuse of one base aircraft
class, the class representing the vehicle. For example,
the only requirement for the B757-ANOPP vehicle is
that the B757Anopp class derives from the B757Base
class. The percentage of the base aircraft classes reused
through leverage varies greatly from 1.5% to 39%. The
variants can be divided into two groups, one that has
very a low percentage of leveraged reuse (<5%) and
one that has a moderate percentage of reuse (>5%).

A very low percentage of leveraged reuse indicates that
the variant primarily extends the base aircraft. In other
words, the majority of the variant’s code adds new fea-
tures to the base aircraft and very little of the base air-
craft behavior is redefined. All of the variants in this
category are research variants. A moderate percentage
of leveraged reuse signifies that the variant redefines
behavior in one or more systems of the base aircraft. A
mixture of research and configuration variants falls into

Table 4 Reuse Metrics of Aircraft Variants
Name Parent Classes LOC AoR ERL Leveraged
B757-ANOPP B-757 9 1927 98% .94 1.5%
B757-CTAS B-757 10 1358 99% .93 3.0%
B757-RIPS B-757 9 533 99% .94 1.5%
B757-VISTAS B-757 12 6973 94% .92 3.0%
B757-WXAP B-757 33 10070 91% .80 3.0%
F16A-FL F16A 22 4016 73% .65 39.0%
F18E-AWS F18E 17 2267 98% .91 7.9%
F18A-SRA F18A 21 3611 90% .79 18.5%
F18C F18A 51 21813 60% .61 9.9%
F18TV F18A 41 14089 70% .66 27.2%

Figure 1 Design of Aircraft Variants

Base Aircraft

Variant 1 Variant 2 Variant 3

10
American Institute of Aeronautics and Astronautics

this category. While maintaining beneficial levels of
reuse, the design of variants accommodates both vari-
ants that primarily add behavior to base aircraft and
variants that moderately redefine base aircraft behavior.

Conclusions
To study the effectiveness of LaSRS++ as a reusable
framework, this study computed reuse metrics for
eleven vehicle models produced using LaSRS++. Three
static code analysis methods were used to identify the
reused LaSRS++ components: object chain (OC), re-
fined object chain (RO), and dependency chain (DC).
The OC and DC methods provide a lower and upper
bound for the estimated reuse metrics respectively. But,
the OC method severely undercounts the reused files.
The RO method, which attempts to account for files the
OC method overlooks, was considered by the author to
be the best estimator of reused components. Since the
DC results are close to the RO results, the DC method,
which is the easiest to compute, can provide a good,
quick estimate of reuse for future LaSRS++ vehicles.

Reuse level and reuse frequency metrics were measured
at the LOC and class level. The reuse level metrics
show that LaSRS++ succeeds as a repository of reus-
able components. According to the RO results,
LaSRS++ makes up more than two-thirds of the total
LOC and more than 82% of the total classes. Further-
more, the component lists revealed a core set of
LaSRS++ components that are common across all air-
craft. This core set makes up at least 80% of the reused
components and at least 56% of the total program size.
Thus, LaSRS++ provides a code foundation for build-
ing simulations at LaRC. The reuse frequency metrics
demonstrate that this foundation extends beyond pro-
gram size. LaSRS++ provides a solid structural foun-
dation. The majority of a simulation’s logical structure
comes from LaSRS++. More than 94% of all objects in
a simulation are created from LaSRS++ classes. Thus,
design cycles involve the definition of less than 6% of a
simulation’s objects. More than 89% of the program
logic resides within LaSRS++ code. Testing can con-
centrate on as little as 11% of the program logic. Of the
classes that a vehicle reuses, more than 93% are reused
verbatim and less than 11% are leveraged through in-
heritance. These percentages corroborate that aircraft

models are a small extension to a larger infrastructure
supplied by LaSRS++.

When creating variants of a base aircraft, LaRC devel-
opers use object-oriented design to manage the base
aircraft as a reusable resource. Variants inherit from the
base aircraft. Reuse level metrics were extracted from
ten existing variants. The metrics show that 60% - 99%
of a variant is composed of base aircraft code. The
amount of leveraged reuse among variants demonstrates
that the variant design works equally well for variants
that simply add new behaviors and for variants that re-
define base aircraft behaviors. The variant design suc-
cessfully enables the tailoring of existing aircraft mod-
els.

Bibliography
1 R. Leslie, D. Geyer, K. Cunningham, M. Madden, P.
Kenney, and P. Glaab. LaSRS++: An Object-Oriented
Framework for Real-Time Simulation of Aircraft.
AIAA-98-4529, Modeling and Simulation Technology
Conference, Boston, MA, August 1998.
2 P. Kenney, et. al. Using Abstraction to Isolate Hard-
ware in an Object-Oriented Simulation. AIAA Model-
ing & Simulation Technologies Conference, Boston,
August 1998, AIAA-98-4533.
3 R. Leach. Methods of Measuring Software Reuse for
the Prediction of Maintenance Effort. Software Main-
tenance: Research and Practice, Vol 8., p 309-320,
1996.
4 W. Frakes and C. Terry. Software Reuse and Reus-
ability Metrics and Models. Technical Report, TR-95-
07, Virginia Polytechnic Institute and State University,
1995.
5 J. Bieman. Deriving Measures of Software Reuse in
Object Oriented Systems. Technical Report, CS-91-112,
Colorado State University, 1991.
6 G. Booch. Object-Oriented Analysis and Design with
Applications. Benjamin/Cummings Publishing Com-
pany, Inc. NewYork, 1994. ISBN 0-8053-5340-2.
7 P. Devanbu, S. Karstu, W. Melo, and W. Thomas.
Analytical and Empirical Evaluation of Software Reuse
Metrics. Proceedings of the 18th International Confer-

11
American Institute of Aeronautics and Astronautics

ence on Software Engineering, Berlin, Germany, p 189-
199, 1996.
8 J. Rossenberg. Some Misconceptions About Lines of
Code. Proceedings of the Fourth International Software
Metrics Symposium, Albuquerque, NM, p 137-142,
1997.
9 M. Rothenberger and J. Hershauer. A Software Reuse
Measure: Monitoring an Enterprise-Level Model
Driven Development Process. Information and Man-
agement, Vol. 35, p 283-293, 1999.
10 J. Poulin, J. Caruso, and D. Hancock. The Business
Case for Software Reuse. IBM Systems Journal, Vol.
32, No. 4, p. 567-594, 1993.

	EXAMINING REUSE IN LASRS++-BASED PROJECTS
	Abstract
	Acronyms
	Introduction
	Categorizing Reuse
	Methods
	Identifying the Reused Components
	Selecting the Metrics

	Base Aircraft Metrics
	Aircraft Variant Metrics
	Conclusions
	Bibliography

